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The concept of topological sensitivity (TS) is extended to enable simultaneous 3D reconstruction of
fractures with unknown boundary condition and characterization of their interface by way of elastic
waves. Interactions between the two surfaces of a fracture, due to e.g. presence of asperities, fluid, or
proppant, are described via the Schoenberg’s linear slip model. The proposed TS sensing platform is
formulated in the frequency domain, and entails point-wise interrogation of the subsurface volume by
infinitesimal fissures endowed with interfacial stiffness. For completeness, the featured elastic
polarization tensor – central to the TS formula – is mathematically described in terms of the shear and
normal specific stiffness ðjs;jnÞ of a vanishing fracture. Simulations demonstrate that, irrespective of
the contact condition between the faces of a hidden fracture, the TS (used as a waveform imaging tool)
is capable of reconstructing its geometry and identifying the normal vector to the fracture surface
without iterations. On the basis of such geometrical information, it is further shown via asymptotic
analysis – assuming ‘‘low frequency’’ elastic-wave illumination, that by certain choices of ðjs;jnÞ
characterizing the trial (infinitesimal) fracture, the ratio between the shear and normal specific stiffness
along the surface of a nearly-planar (finite) fracture can be qualitatively identified. This, in turn, provides
a valuable insight into the interfacial condition of a fracture at virtually no surcharge – beyond the
computational effort required for its imaging. The proposed developments are integrated into a compu-
tational platform based on a regularized boundary integral equation (BIE) method for 3D elastodynamics,
and illustrated via a set of canonical numerical experiments.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

To date, inverse obstacle scattering remains a vibrant subject of
interdisciplinary research with applications to many areas of
science and engineering (Pike et al., 2002). Its purpose is to recover
the geometric as well as physical properties of unknown hetero-
geneities embedded in a medium from the remote observations
of thereby scattered waveforms. Such goal is pursued by studying
the nonlinear and possibly non-unique relationship between the
scattered field produced by a hidden object, e.g. fracture, and its
characteristics.

From the mathematical viewpoint, the fracture reconstruction
problem was initiated in Kress (1995) where, from the knowledge
of the far-field scattered waveforms, the shape of an open arc was
identified via the Newton’s method. This work was followed by a
suite of non-iterative reconstruction approaches such as the
factorization method (e.g. Boukari and Haddar, 2013), the linear
sampling method (LSM) (Kirsch and Ritter, 2000) and the concept
of topological sensitivity (TS) (Guzina and Bonnet, 2004) that are
capable of retrieving the shape, location, and the size of buried
fractures. Recently, a TS-related approach has also been proposed
for the reconstruction of a collection of small cracks in elasticity
(Ammari et al., 2013b).

A non-iterative approach to inverse scattering which motivates
the present study is that of TS (Guzina and Bonnet, 2004; Bonnet
and Guzina, 2004). In short, the TS quantifies the leading-order
perturbation of a given misfit functional due to the nucleation of
an infinitesimal scatterer at a sampling point in the reference
(say intact) domain. The resulting TS distribution is then used as
an anomaly indicator by equating the support of its most
pronounced negative values with that of a hidden scatterer. The
strength of the method lies in providing a computationally efficient
way of reconstructing distinct inner heterogeneities without the
need for prior information on their geometry. Recently, a rigorous
mathematical analysis of the TS for point-like anomalies is
performed (Ammari et al., 2012, 2013a) which not only justifies
the TS approach as a valid imaging algorithm, but also reveals that
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Fig. 1. Illumination of a hidden fracture C 2 R3 with specific stiffness K by a plane
(P- or S-) incident wave propagating in direction d, where the induced wavefield is
monitored over Sobs.

F. Pourahmadian, B.B. Guzina / International Journal of Solids and Structures 71 (2015) 126–140 127
the TS, compared to other imaging functionals (e.g. MUSIC and
backpropagation), is more robust both in terms of measurement
and medium noise (Ammari et al., 2012). Moreover, Bellis and
Bonnet (2013) demonstrated the ability of TS to image
traction-free cracks. Motivated by the reported capability of TS to
not only image – but also characterize – elastic inclusions
(Guzina and Chikichev, 2007), this study aims to explore the poten-
tial of TS for simultaneous imaging and interfacial characterization
of fractures with contact condition due to e.g. the presence of
asperities, fluid, or proppant at their interface.

Existing studies on the sensing of obstacles with unknown con-
tact condition reflect two principal concerns, namely: (i) the effect
of such lack of information on the quality of geometric reconstruc-
tion, and (ii) the retrieval – preferably in a non-iterative way – of
the key physical characteristics of such contact. The former aspect
is of paramount importance in imaging stress corrosion fractures
(Hernandez-Valle et al., 2014), where the crack extent may be
underestimated due to interactions at its interface, leading to a
catastrophic failure. To help address such a problem, Boukari and
Haddar (2013) developed the factorization method for the shape
reconstruction of acoustic impedance cracks. Studies deploying
the LSM as the reconstruction tool (e.g. Cakoni and Colton, 2014;
Cakoni and Monk, 2010), on the other hand, show that the LSM
is successful in imaging obstacles and fractures regardless of their
boundary condition. As to the second concern, a variational
method was proposed in Colton and Cakoni (2004) to determine
the essential supremum of electrical impedance at the boundary
of partially-coated obstacles. By building on this approach,
Cakoni and Kress (2013) devised an iterative algorithm for the
identification of surface properties of obstacles from acoustic and
electromagnetic data. Recently, Minato and Ghose (2014) proposed
a Fourier-based algorithm using reverse-time migration and wave-
field extrapolation to retrieve the location, dip and heterogeneous
compliance of an elastic interface under the premise of (a) one-way
seismic wavefield, and (b) absence of evanescent waves along the
interface.

Considering the small-amplitude elastic waves that are
typically used for seismic imaging and non-destructive material
evaluation, the Schoenberg’s linear slip model (Schoenberg, 1980)
is widely considered as an adequate tool to describe the contact
condition between the faces of a fracture. This framework can be
interpreted as a linearization of the interfacial behavior about the
elastostatic equilibrium state (Pourahmadian et al., 2012) prior to
elastic-wave excitation, which gives rise to linear (normal and
shear) specific stiffnesses kn and ks. Here it is worth noting that
strong correlations are reported in the literature (Verdon and
Wustefeld, 2013; Choi et al., 2014; Ahmadian et al., 2010) between
ðks; knÞ and surface roughness, residual stress, fluid viscosity (if pre-
sent at the interface), intact material properties, fracture connec-
tivity, and excitation frequency. In this vein, remote sensing of
the specific stiffness ratio ks=kn has recently come under the spot-
light in hydraulic fracturing, petroleum migration, and Earth’s Crit-
ical Zone studies (Knight et al., 2010; Baird et al., 2013). By way of
laboratory experiments (Choi et al., 2014; Place et al., 2014;
Bakulin et al., 2000), it is specifically shown that ks=kn – often
approximated as either one (dry contact) or zero (isolated
fluid-filled fracture) – can deviate significantly from such canonical
estimates, having fundamental ramifications on the analysis of the
effective moduli and wave propagation in fractured media. A
recent study (Baird et al., 2013; Verdon and Wustefeld, 2013) on
the production from the Cotton Valley tight gas reservoir, using
shear-wave splitting data, further highlights the importance of
monitoring ks=kn during hydraulic fracturing via the observations
that: (i) the correlation between proppant introduction and
dramatic increase in ks=kn can be used as a tool to directly image
the proppant injection process; (ii) the ratio ks=kn provides a means
to discriminate between newly created, old mineralized and
proppant-filled fractures, and (iii) ks=kn may be used to monitor
the evolving hydraulic conductivity of an induced fracture network
and subsequently assess the success of drilling and stimulation
strategies.

In what follows, the TS sensing platform is developed for the
inverse scattering of time-harmonic elastic waves by fractures
with unknown geometry and contact condition in R3. On postulat-
ing the nucleation of an infinitesimal penny-shaped fracture with
constant (normal and shear) interfacial stiffnesses at a sampling
point, the TS formula and affiliated elastic polarization tensor are
calculated and expressed in closed form. Simulations demonstrate
that, irrespective of the contact condition between the faces of a
hidden fracture, the TS is capable of reconstructing its geometry
and identifying the normal vector to the fracture surface without
iterations. Assuming illumination by long wavelengths, it is further
shown that the TS is capable (with only a minimal amount of addi-
tional computation) of qualitatively characterizing the ratio ks=kn

along the surface of nearly-planar fractures. The proposed develop-
ments are integrated into a computational platform based on a reg-
ularized boundary integral equation (BIE) method for 3D
elastodynamics. For completeness, the simulations also include
preliminary results on the ‘‘high’’-frequency TS sensing of fractures
with specific stiffness, which may motivate further studies in this
direction.
2. Preliminaries

Consider the scattering of time-harmonic elastic waves by a
smooth fracture surface C � B1 � R3 (see Fig. 1) with a linear,
but otherwise generic, contact condition between its faces C�.
For instance the fracture may be partially closed (due to surface
asperities), fluid-filled, or traction free. Here, B1 is a ball of radius
R1 – containing the sampling region i.e. the search domain for hid-
den fractures. The action of an incident plane wave ui on C results in
the scattered field ~u – observed in the form of the total field

uðnÞ ¼ uiðnÞ þ ~uðnÞ; n 2 Sobs; ð1Þ

over a closed measurement surface Sobs ¼ @B2, where B2 is a ball of
radius R2 � R1 centered at the origin. The reference i.e. ‘‘back-
ground’’ medium is assumed to be elastic, homogeneous, and iso-
tropic with mass density q, shear modulus l, and Poisson’s ratio m.
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Dimensional platform. For simplicity, all quantities in the sequel
are rendered dimensionless by taking q;l, and R1 (see Fig. 1) as the
reference scales for mass density, elastic modulus, and length,
respectively – which amounts to setting q ¼ l ¼ R1 ¼ 1
(Barenblatt, 2003).

Sensory data. In what follows, the time-dependent factor eixt

will be made implicit, where x denotes the frequency of excita-
tion. With such premise, the incident wavefield can be written as
uiðnÞ ¼ be�ikn�d where k ¼ x=c signifies the wavenumber; c is the
relevant (compressional or shear) wave speed; b 2 X is the polar-
ization vector, and d 2 X specifies the direction of propagation of
the incident plane wave, noting that X stands for a unit sphere.
For each incident plane wave specified via pair ðb;dÞ, values of

the total field uðnÞ are collected over Sobs.
Governing equations. With the above assumptions in place, the

scattered field ~uðnÞ can be shown to satisfy the field equation and
interfacial condition

r � ½C : r~u�ðnÞ þx2 ~uðnÞ ¼ 0; n 2 R3 n C;
~t�ðnÞ ¼ �KðnÞs~utðnÞ � t�f ðnÞ; n 2 C�;

ð2Þ

complemented by the Kupradze radiation conditions (Achenbach,
2003) at infinity. Here, R3 n C denotes the unbounded domain
surrounding C; s~ut ¼ sut ¼ uþ � u� signifies the crack opening
displacement (COD) on C; ~t� ¼ n� � C : r~u� where n� is the unit
normal on C� (see Fig. 1); KðnÞ is a symmetric, positive-definite
matrix of the specific stiffness coefficients; t�f ¼ n� � C : rui denotes

the free-field traction on C�, and C is the (dimensionless)
fourth-order elasticity tensor

C ¼ 2 Isym
4 þ m

1� 2m
I2 � I2

h i
;

in which I2 and Isym
4 stand respectively for the second-order and

symmetric fourth-order identity tensors. Following the usual
convention (Bonnet, 2011b), the unsigned tractions and normals
on a generic surface S (e.g. tf ;n) are referred to S� and affiliated
normal n� where applicable.

Here it is noted that K , which accounts for the interaction
between Cþ and C� due to e.g. surface asperities, fluid, or proppant
at the fracture interface, may exhibit arbitrary spatial variations
along C in terms of its normal and shear components. In light of
the fact that the primary focus of this work is ‘‘low’’ frequency
sensing where the illuminating wavelength exceeds most (if not
all) characteristic length scales of a fracture – de facto resulting
in the spatial averaging of its properties, it is for simplicity
assumed that the normal and shear specific stiffness are both
constant across C (Schoenberg, 1980; Pyrak-Nolte and Cook,
1987; Pyrak-Nolte and Nolte, 1992). More specifically, it is hereon
assumed that

KðnÞ ¼ K ¼ knðn� nÞ þ ks

X2

b¼1

ðeb � ebÞ; n 2 C; ð3Þ

where ðe1; e2;nÞ constitute an orthonormal basis on C; ks ¼ const:
(resp. kn ¼ const:) is the dimensionless shear (resp. normal) specific
stiffness, and � signifies the tensor product.

Cost functional. For the purposes of solving the inverse problem
the cost functional is, assuming given incident wavefield ui,
defined as

JðCtrialÞ ¼
Z

Sobs
u v ;uobs; n
� �

dSn; ð4Þ

in terms of the least-squares misfit density
uðv ;uobs; nÞ ¼ 1
2

vðnÞ � �uobsðnÞ
� �

�WðnÞ � vðnÞ � uobsðnÞ
� �

; ð5Þ

where uobs are the observations of ujSobs (say polluted by noise); v is
the simulation of u computed for trial fracture Ctrial, and W is a suit-
able (positive definite) weighting matrix, e.g. data covariance
operator.

3. Topological sensitivity for a fracture with specific stiffness

On recalling (4) and denoting

Ce ¼ no þ eCtrial; no 2 B1; ð6Þ

where Ctrial contains the origin, the topological sensitivity (TS) of
the featured cost functional can be defined as the leading-order
term in the expansion of JðCeÞ with respect to the vanishing (trial)
fracture size as e! 0 (Bellis and Bonnet, 2013). In what follows,
Ctrial is taken as a penny-shaped fracture of unit radius with normal
n0, shear specific stiffness js, and normal specific stiffness jn,
whereby its stiffness matrix can be expressed as

K trial ¼ jnðn0 � n0Þ þ js

X2

b¼1

ðe0b � e0bÞ ð7Þ

with reference to the local orhonormal basis ðe01; e02;n0Þ. Here it is
worth recalling that the true ðKÞ and trial ðK trialÞ stiffness matrices
are both described with respect to the same dimensional platform
where l ¼ q ¼ R1 ¼ 1. Hereon, the stiffness matrix affiliated with
an infinitesimal trial scatterer Ce according to (6) is denoted by Ke

– whose relationship with K trial is to be determined.
On the basis of the above considerations, the topological sensi-

tivity Tðno; n0;jn;jsÞ is obtained from the expansion

JðCeÞ ¼ Jð;Þ þ f ðeÞTðno; n0;jn;jsÞ þ o f ðeÞð Þ as e! 0; ð8Þ

where f ðeÞ ! 0 with diminishing e, see also (Sokolowski and
Zochowski, 1999; Gallego and Rus, 2004; Guzina and Bonnet,
2004; Bonnet and Guzina, 2004). Thanks to the fact that the trial
scattered field ~vðnÞ ¼ vðnÞ � uiðnÞ due to Ce vanishes as e! 0, (4)
can be conveniently expanded in terms of v about ui, see (Bonnet,
2011b). As a result (8) can be rewritten, to the leading order, as

JðCeÞ � Jð;Þ ’
Z

Sobs

@u
@v ðu

i;uobs; nÞ � ~vðnÞ dSn

¼ f ðeÞTðno; n0;jn;jsÞ: ð9Þ

Adjoint field approach. At this point, one may either differentiate

(5) at v ¼ ui and seek the asymptotic behavior of ~vðnÞ over Sobs, or
follow the adjoint field approach (e.g. Bonnet, 2011b; Bellis, 2010)

which transforms the domain of integration in (9) from Sobs to Ce –
and leads to a compact representation of the TS formula. The
essence of the latter method, adopted in this study, is to interpret
the integral in (9) through Graffi’s reciprocity identity (Achenbach,
2003) between the trial scattered field ~vðnÞ and the so-called
adjoint field ûðnÞ, whose governing equations read

~v :
r � ½C : r~v �ðnÞ þx2 ~vðnÞ ¼ 0; n 2 R3 n Ce

~t�ðnÞ ¼ �Kes~vtðnÞ � t�f ðnÞ; n 2 C�e

8<
: ;

û :
r � ½C : rû�ðnÞ þx2ûðnÞ ¼ 0; n 2 R3

st̂tðnÞ ¼ @u
@v ðui;uobs; nÞ; n 2 Sobs

8<
: ;

ð10Þ

subject to the Kupradze radiation condition at infinity. Here t̂ and ~t
denote respectively the adjoint- and scattered-field tractions;
s~vt ¼ ~vþ � ~v� is the crack opening displacement on Ce, and
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st̂tðnÞ ¼ lim
g!0

nðnÞ � C � rûðn� gnÞ � rûðnþ gnÞð Þ; n 2 Sobs ð11Þ

denotes the jump in adjoint-field tractions across Sobs with outward
normal n. Note that the adjoint field is defined over the intact ref-
erence domain, whereby û is continuous 8n 2 B1 and consequently
t̂� ¼ 	t̂ on C�e . As a result, application of the reciprocity identity
over R3 n Ce can be shown to reduce (9) to

Tðno; n0;jn;jsÞ ¼ f ðeÞð Þ�1
Z

Ce

t̂ðnÞ � s~vtðnÞ dSn: ð12Þ
3.1. Asymptotic analysis

Considering the trial scattered field ~vðnÞ, the leading-order con-
tribution of the COD is sought on the boundary of the vanishing
crack (n 2 Ce) as e! 0. For problems involving kinematic disconti-
nuities such as that investigated here, it is convenient to deploy the
traction BIE framework (Bonnet, 1999) as the basis for the asymp-
totic analysis, namely

tf ðnÞ þ Ke � s~vtðnÞ ¼ n0 � C :

Z
--

Ce

Rðn; x;xÞ

: Dxs~vtðxÞdSx � qx2n0 � C

:

Z
Ce

Uðn; x;xÞ � s~vt� n0ð ÞðxÞdSx; n 2 Ce; ð13Þ

where, assuming the Einstein summation convention over repeated
indexes,

U ¼ Uk
i ðn; x;xÞek � ei; R ¼ Rk

ijðn; x;xÞek � ei � ej;

Uk
i ðn; x;xÞ and Rk

ijðn; x;xÞ (given in Appendix A) denote respectively
the elastodynamic displacement and stress fundamental solution
due to point force acting at x 2 R3 in direction k;

R
-- signifies the

Cauchy-principal-value integral, and Dx is the tangential differential
operator (Bonnet, 1999) on Ce given by

Dxðf Þ ¼ Dklðf mÞel � em � ek; Dklðf mÞ ¼ n0kf m;l � n0lf m;k; ð14Þ

such that n0k ¼ n0kðxÞ and f m;k ¼ @f m=@xk in the global coordinate
frame.

Scaling considerations. Motivated by (6), a change of variable
x ¼ no þ e�x is introduced where x 2 Ce and �x 2 Ctrial, resulting in
the scaling relations

dSx ¼ e2dS�x; Dxð�Þ ¼ e�1D�xð�Þ; tf ðnÞ ¼ tf ðnoÞ þ OðeÞ; n 2 Ce;

ð15Þ

when e! 0. In this setting, the elastodynamic fundamental tensors
in (13) are known to have the asymptotic behavior

Rðn; x;xÞ ¼ e�2 �Rð�n; �xÞ þ Oð1Þ;
Uðn; x;xÞ ¼ e�1 �Uð�n; �xÞ þ Oð1Þ; �x; �n 2 Ctrial; ð16Þ

in which �Uð�n; �xÞ and �Rð�n; �xÞ signify the displacement and stress ten-
sors associated with the Kelvin’s elastostatic fundamental solution
(Bonnet, 1999). Moreover, introducing the change of variable
n ¼ no þ e�n in the boundary condition in (10) affiliated with ~vðnÞ
yields the rescaled contact condition at �n 2 Ctrial as

�t�ð�nÞ ¼ �eKes�vtð�nÞ � �t�f ð�nÞ; �n 2 C�trial; ð17Þ

where �vð�nÞ is the trial scattered field ~vðnÞ recast in terms of �n so that

s�vtð�nÞ :¼ s~vtðno þ e�nÞ; �n 2 Ctrial; ð18Þ

while �tð�nÞ ¼ n0 � C : r�vð�nÞ and �tf ð�nÞ ¼ n0 � C : r�uið�nÞ (with r ¼ r�n

and �uið�nÞ ¼ uiðnÞ) are the associated tractions written in terms of
�n. In light of (7) and (10), (17) reveals the sought relationship
between Ke and K trial as

Ke ¼ e�1K trial ¼
jn

e
ðn0 � n0Þ þ js

e
X2

b¼1

ðe0b � e0bÞ: ð19Þ

Following the logic of earlier works (e.g. Bellis and Bonnet, 2013;
Bellis and Bonnet, 2009; Bonnet, 2011b), the asymptotic behavior
of a vanishing scattered field s�vtð�nÞ as e! 0 can be exposed by sub-
stituting (15), (16) and (19) into (13) which yields

tf ðnoÞ þ e�1K trial � s�vtð�nÞ ¼ e�1n0 � C :

Z
--

Ctrial

�Rð�n; �xÞ

: D�xs�vtð�xÞdS�x þ OðeÞ; �n 2 Ctrial; ð20Þ

and seeking the balance of the featured leading terms (Nayfeh,
1993). To solve (20), consider a representation of the fracture open-
ing displacement as

s�vtð�nÞ ’ ea r f
ijðn

oÞsVt
ijð�nÞ; �n 2 Ctrial; ð21Þ

where r f
ij are the components of the free-field stress tensor

rf ¼ C : rui, and sVt
ij ði; j ¼ 1;2;3Þ are canonical solutions to be

determined. On recalling that the free-field traction tf ¼ n0 � rf in
(20) is independent of e, one immediately finds that a ¼ 1 in (21)
which reduces (20) to

1
2

n0 � ðei � ej þ ej � eiÞ þ K trial � sVt
ijð�nÞ ¼ n0 � C :

Z
--

Ctrial

�Rð�n; �xÞ

: D�xsVt
ijð�xÞdS�x; �n 2 Ctrial: ð22Þ

By analogy to the BIE formulation for an exterior (traction-free)
crack problem in elastostatic (e.g. Bonnet, 1999; Bellis, 2010) one
recognizes that, for given pair ði; jÞ, integral Eq. (22) governs

the fracture opening displacement sVt
ij due to tractions

� 1
2 n0 � ðei � ej þ ej � eiÞ applied to the faces C�trial of a ‘‘unit’’ fracture

Ctrial with interfacial stiffness K trial in an infinite elastic solid (recall

that n0� ¼ 	n0). Owing to the symmetry of sVt
ij with respect to i and

j, (22) can accordingly be affiliated with six canonical elastostatic
problems in R3.

The TS formula. Having s~vt characterized to the leading order,
one finds from (12), (15), (18) and (21) that f ðeÞ ¼ e3 and
consequently

Tðno; n0;jn;jsÞ ¼ rf ðnoÞ : A : r̂ðnoÞ; A

¼ ei � ej �
Z

Ctrial

sVt
ijð�xÞdS�x

 !
� n0; ð23Þ

where r̂ ¼ C : rû denotes the adjoint-field stress tensor, and A is
the so-called polarization tensor – independent of no and x – whose
evaluation is examined next.

3.2. Elastic polarization tensor

In prior works on the topological sensitivity (e.g. Ammari and
Kang, 2004; Guzina and Chikichev, 2007; Bellis and Bonnet,
2009; Park, 2012), relevant polarization tensors were calculated
analytically thanks to the available closed-form solutions for cer-
tain (2D and 3D) elastostatic exterior problems – e.g. those for a
penny-shaped crack, circular hole, and spherical inclusion in an
infinite solid. To the authors’ knowledge, however, analytical solu-

tion to (22) is unavailable. As a result, numerical evaluation of sVt
ij

and thus A is pursued within a BIE framework (Pak and Guzina,
1999; Bonnet, 1999). On recalling the definition of Ctrial and the
dimensional platform established in Section 2, the computation
is effected assuming (i) penny-shaped fracture of unit radius
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K ¼ 1, (ii) unbounded elastic medium R3 with unit shear modulus
and mass density (l ¼ 1;q ¼ 1), and (iii) various combinations
between the trial fracture parameters ðjs;jnÞ and the Poisson’s
ratio m of the elastic solid.

To solve (22) for given Ctrial 2 R3, A BIE computational platform
is developed on the basis of the regularized traction boundary inte-
gral equation (Bonnet, 1999) where the featured weakly-singular
integrals are evaluated via suitable mapping techniques (Pak and
Guzina, 1999). Without loss of generality, it is assumed that the
origin of �n coincides with the center of a penny-shaped fracture
surface, and that n0 ¼ �e3 (see Fig. 11). A detailed account of the
adopted BIE framework, including the regularization and
parametrization specifics, is provided in Appendix B.

To validate the computational developments, Fig. 2(a) compares

the numerically-obtained nontrivial components of sVkt
i3 with

their analytical counterparts along the line of symmetry in Ctrial

assuming traction-free interfacial conditions (jn ¼ js ¼ 0) and
m ¼ 0:35. Here is noted that, thanks to the problem symmetries,

the variation of sV1t
13 equals that of sV2t

23 along the �n1-axis i.e.
the line of symmetry. To illustrate the influence of K trial on the
result, Fig. 2(b) shows the effect of shear specific stiffness js

(assuming jn ¼ 0) on the tangential fracture opening displacement

sV1t
13; a similar behavior is also observed concerning the effect of

jn on the normal opening component sV3t
33.

Structure of the polarization tensor. Before proceeding further, it
is useful to observe from (23) that only the part of A with minor
symmetries enters the computation of T thanks to the symmetry
of rf and r̂. Further, as shown in Ammari and Kang (2007) and
Bellis and Bonnet (2013), properties of the effective polarization

tensor (hereon denoted by Aeff ) can be extended to include the
major symmetry. With reference to the local basis ð�e1; �e1; �e3 ¼ n0Þ,
Fig. 2. Dependence of the crack opening displacement sVt
ij and coefficients of the effec

assuming m ¼ 0:35: (a) analytical values (solid lines) vs. numerical values (dots) of the CO
increasing ks , and (c) proposed variation (solid lines) vs. numerical variation (dots) of an

Fig. 3. Performance of the formulas (25) describing anðjn; mÞ and asðjs; mÞ in the ðm
on the other hand, one finds that: (i) sVt
ab ¼ 0 (a; b ¼ 1;2) due

to a trivial forcing term in (22); (ii) sVt
33 / �e3 owing to the symme-

try (about the �n3 ¼ 0 plane) of the boundary value problem for a
penny-shaped fracture in R3 solved by (22), and (iii)

sVt
a3 � �e3 ¼ sVt

3a � �e3 ¼ 0 due to the anti-symmetry of the germane
boundary value problem about the �n3 ¼ 0 plane – combined with
the axial symmetry of Ctrial about the �n3-axis. A substitution of

these findings immediately verifies that sVt
3a and sVt

a3 are inde-

pendent of jn, whereas sVt
33 does not depend on js. Note, how-

ever, that the above arguments are predicated upon the diagonal
structure of K trial according to (3). As a result, one finds that the
effective polarization tensor, superseding A in (23), permits
representation

Aeff ¼ asðjs; mÞ
X2

b¼1

ð�e3 � �eb þ �eb � �e3Þ � ð�e3 � �eb þ �eb � �e3Þ

þ anðjn; mÞð�e3 � �e3 � �e3 � �e3Þ: ð24Þ

To evaluate the dependency of as and an on their arguments, A is
evaluated numerically according to (23) for various triplets
ðm;js;jnÞ. On deploying the Matlab optimization toolbox, the coef-
ficients asðjs; mÞ and anðjn; mÞ are found to be rational functions of
their arguments, identified as

asðjs; mÞ ¼
4ð1� m2Þ

3ð2� mÞðjsKþ mþ 1Þ ; anðjn; mÞ ¼
8ð1� mÞð2mþ 1Þ
3ðjnKþ 2mþ 1Þ ;

ð25Þ

where the implicit scaling parameter, K ¼ 1, is retained to facilitate
the forthcoming application of (21) to penny-shaped fractures of
non-unit radius. Assuming m ¼ 0:35, the behavior of as and an
tive polarization tensor Aeff on the specific stiffnesses, js and jn , of a trial fracture
D along ð�n1;0;0Þ for a traction-free crack; (b) evolution of the shear COD sV1t

13 with
and as versus the relevant specific stiffness.

;js;jnÞ-space: numerical values (dots) vs. proposed expressions (solid lines).
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according to (25) is plotted in Fig. 2(c) versus the germane
specific stiffness, with the corresponding numerical values included
as dots. For completeness, a comparison between (25) and the
BIE-evaluated values of as and an is provided in Fig. 3 for a range
Poisson’s ratios, m 2 ½0:05;0:45�.

From (24), it is seen that the interfacial condition on Ctrial has no
major effect on the structure of the polarization tensor. This may
explain the observation from numerical experiments (Section 5)
that by using a traction-free trial crack (js ¼ jn ¼ 0) in (24), the
geometrical characteristics of a hidden fracture – its location, nor-
mal vector and, in the case of high excitation frequencies, its shape
– can be reconstructed regardless of the assumed interfacial condi-
tion. Nonetheless, a trial crack with interacting surfaces introduces
two new parameters (js and jn) to the reconstruction scheme,
whereby further information on the hidden fracture’s interfacial
condition may be extracted. In this vein, it can be shown that the
first-order topological sensitivity (23) is, for given no, a monotonic
function of jn; js; accordingly, precise contact conditions on C (the
true fracture) cannot be identified separately via e.g. a TS-based
minimization procedure. In principle, such information could be
retrieved by pursuing a higher-order TS scheme (e.g. Bonnet,
2011a) which is beyond the scope of this study. As shown in the
sequel, however, the present (first-order) TS sensing framework
is capable of qualitatively identifying the ratio between the specific
shear and normal stiffnesses on C – an item that is strongly corre-
lated with the hydro-mechanical properties (e.g. hydraulic conduc-
tivity) of the fracture interface (Place et al., 2014), and thus
potentially of great interest in hydraulic fracturing applications
(e.g. Bakulin et al., 2000; Verdon and Wustefeld, 2013).

4. Qualitative identification of the fracture’s interfacial
condition

In this section, an ability of the TS indicator function (23) to
qualitatively characterize the interfacial condition of
nearly-planar fractures is investigated in the ‘‘low’’ frequency regime
where the illuminating wavelength 2p=k, controlled by wavenum-
ber k, exceeds – by at least 2–3 times – the characteristic size of C
i.e. the maximum extent associated with the fracture geometry
such as diameter or length. Such limitations are introduced to facil-
itate the asymptotic analysis where the true (finite) fracture is
approximated as being penny-shaped. The proposed analysis natu-
rally extends to arbitrary-shaped, near-flat fractures by assuming a
diagonal, to the leading order, interfacial stiffness matrix and the
COD profile proposed in Fabrikant (1987) to calculate the relevant
polarization tensor required in the asymptotic approximation of
the scattered field due to C. In the approach, it is also assumed that
the fracture location and normal vector to its surface are identified
via an initial TS reconstruction performed using a traction-free trial
crack (js ¼ jn ¼ 0) as described in Section 5. As shown there, how-
ever, the latter geometric reconstruction is not limited to a partic-
ular frequency range.

On recalling the least-squares distance function u in (5) and the
leading-order perturbation of Jð;Þ in (9), the TS may be rewritten as

e3 Tðno; n0;jn;jsÞ ¼ �Re
Z

Sobs
~u
ðnÞ � ~vðnÞdSn

� �
; ð26Þ

where ð�Þ
 signifies complex conjugation and �~u
ðnÞ ¼ @u
ðv;uobs; nÞ=@vjv¼ui , noting that ~u ¼ u� ui is the scattered field due
to C, see (1). Given the fact that the hidden fracture is separated

from the observation surface, the scattered field on Sobs can be
expressed via a displacement boundary integral representation as

~uðnÞ ¼
Z

C
s~utðxÞ � nð Þ : Rðn; x;xÞ dSx; n 2 Sobs: ð27Þ
Small crack asymptotics. Consider the testing configuration as in
Fig. 1, and let C with interfacial stiffness (3) be illuminated by a
‘‘low-frequency’’ plane wave ui ¼ be�ikn�d in that kL� 1, where 2L
is the characteristic size of C, normalized by the radius of the sam-
pled domain (see Section 2). With such premise and hypothesis
that 2L < R1 ¼ 1� R2 made earlier (recall that R2 is the radius of

Sobs), the hidden fracture can – in situations of predominantly flat
geometry and an Oð1Þ aspect ratio – be approximated as a
penny-shaped fracture of finite radius L. In this setting (27) can
be expanded, utilizing the developments from Section 3, as

~uðnÞ ’
Z

C
s~utðxÞ � nð ÞdSx

� 	
: Rðn; z;xÞ ’ L3 r f ðzÞ : AC : Rðn; z;xÞ;

n 2 Sobs; ð28Þ

where z (to be determined) is an indicator of the fracture location,
and AC is its effective (low-frequency) polarization tensor given by

AC ¼
X2

b¼1

1sðn� eb þ eb �nÞ � ðn� eb þ eb �nÞ þ 1nðn�n�n�nÞ:

ð29Þ

Here n is the normal on C; ðe1; e2;nÞ make an orthonormal basis,
and

1sðks; mÞ ¼
4ð1� m2Þ

3ð2� mÞðksLþ mþ 1Þ ; 1nðkn; mÞ ¼
8ð1� mÞð2mþ 1Þ
3ðknLþ 2mþ 1Þ ;

ð30Þ

where ks and kn are the shear and normal specific stiffness of the
true fracture according to (3), see also (7) and (25). On taking with-
out loss of generality ðe1; e2;nÞ as the basis of the global coordinate
system, (28) can be rewritten in component form as

~ujðnÞ ¼ L3 41sðks;mÞR j
3bðn;z;xÞr

f
3bðzÞ þ 1nðkn;mÞR j

33ðn;z;xÞr
f
33ðzÞ

h i
;

n 2 Sobs; ð31Þ

where b ¼ 1;2 and the summation is assumed over repeated
indexes as before.

Assuming that the location and (average) normal on C are iden-
tified beforehand, one may set n0 ¼ n and no ¼ z in (26) and expand
the scattered field due to vanishing trial fracture Ce ¼ no þ eCtrial in
an analogous fashion as

~v jðnÞ¼ e3 4asðjs;mÞR j
3bðn;z;xÞr

f
3bðzÞþanðjn;mÞR j

33ðn;z;xÞr
f
33ðzÞ

h i
;

n2 Sobs; ð32Þ

On substituting (31) and (32) into (26), the leading-order TS
contribution in the low-frequency regime is obtained as

Tðz;jn;jsÞ ’ �L3 an1nQ 1ðzÞ þ as1n þ an1sð ÞQ 2ðzÞ þ as1sQ 3ðzÞ½ �;
ð33Þ

where

Q 1ðzÞ ¼ r f
33ðzÞ




 


2 Z
Sobs

Rj

33R

j
33

h i
ðn; z;xÞdSn;

Q 2ðzÞ ¼ 4Re rf

33r

f
3b

h i
ðzÞ
Z

Sobs
Rj


33R
j
3b

h i
ðn; z;xÞdSn

� �
;

Q 3ðzÞ ¼ 16Re rf

3ar

f
3b

h i
ðzÞ
Z

Sobs
Rj


3aR
j
3b

h i
ðn; z;xÞdSn

� �
;

ð34Þ

where ð�Þ
 indicates complex conjugation, a;b ¼ 1;2, and j ¼ 1;2;3
as before. With reference to Appendix A, integration of the
anti-linear forms, featuring components of the fundamental stress

tensor, over Sobs can be performed analytically by approximating
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the distance r ¼ jn� zj; n 2 Sobs in (A.1) and (A.2) to the leading
order as r ¼ R2. As a result, the behavior of (34) can be approxi-
mated as

Q 1 ’
jr f

33ðzÞj
2

4pR2
2

1
5

X2 þ
4
3

ReðX3Þ þ jB5ðR2Þj2
� �

;

Q 2 ¼ O
1
R3

2

 !
’ 0; Q3 ’

4
pR2

2

rf

3br

f
3b

h i
ðzÞ 1

15
X2 þ

2
3
jB4ðR2Þj2

� �
;

ð35Þ

owing to the initial premise of ‘‘far field’’ sensing (namely R2 � 1
within the adopted dimensional platform), where B4ð�Þ;B5ð�Þ;X2

and X3 are given by (A.2) and (A.6) in Appendix A along with the
calculation details.

A remarkable outcome of the analysis is that the coefficient Q 2

describing the mixed term in (35) vanishes to the leading order,
whereby the TS structure decouples and may be perceived as a
superposition of the normal and shear contributions. Specifically,
(33) becomes

Tðz; n;jn;jsÞ ’ �L3 anðjn; mÞ1nQ1ðzÞ þ asðjs; mÞ1sQ3ðzÞð Þ; ð36Þ

where 1n and 1s are given by (30). On account of (36) and the lim-
iting behavior of an (resp. as) as a function of the trial interface
parameter jn (reps. js) in (25), the ratio between the shear and nor-
mal specific stiffness (ks=kn) of a hidden fracture can be qualitatively
identified via the following procedure.

Interface characterization scheme. With reference to the last
paragraph of Section 3, it is hereon assumed that the fracture loca-
tion is identified beforehand from the low-frequency scattered
field data as

z ¼ arg minno Tðno; n0ðnoÞ;0;0Þ ð37Þ
Fig. 4. Ratio ½T1=T2�ðzÞ vs. the radius of Sobs, measured in shear wavelengths, assum

Fig. 5. Model problem: (a) sensing configuration with an embedded penny sh
where, for each sampling point, n0ðnoÞ is the optimal unit normal
(minimizing T at that point) as described in Bellis and Bonnet
(2013). In this setting the effective normal to a hidden fracture, n,
is obtained by averaging n0ðnoÞ over a suitable neighborhood of z.
Here it is for completeness noted that the spatial variation of
n0ðnoÞ provides a clue whether the hidden fracture is nearly-
planar and thus amenable to the proposed treatment, see the
low-frequency results in Figs. 6 and 7 as an example.

In the vicinity of z, the TS characterization of the fracture’s
interfacial condition is performed using two (vanishing) trial frac-
tures: one allowing for the COD in the normal direction only by
assuming ðjs;jnÞ ¼ ð1;0Þ, and the other restricting the COD to
tangential directions via ðjs;jnÞ ¼ ð0;1Þ. The resulting TS fields
are then normalized by the relevant components of rf ðzÞ according
to (34). Thanks to the limits limjs!1as ¼ 0 and limjn!1an ¼ 0, this
leads to the respective indicator functionals

T1ðnoÞ ¼ 1

jr f
33ðzÞj

2 Tðno; n;0;1Þ

’ � L31n

4pR2
2

anð0; mÞ
1
5

X2 þ
4
3

ReðX3Þ þ jB5ðR2Þj2
� �

;

T2ðnoÞ ¼ 1

½rf

3br

f
3b�ðzÞ

Tðno; n;1;0Þ

’ �4L31s

pR2
2

asð0; mÞ
1

15
X2 þ

2
3
jB4ðR2Þj2

� �
;

ð38Þ

were no is in a neighborhood of z. In practical terms, the latter is
identified as a ball (centered at z) whose radius is a fraction of
the germane (compressional or shear) wavelength. On the basis of
(38), one can identify three distinct interface scenarios:

1. The situation where ks and kn are of the same order of magni-
tude (e.g. traction-free crack), in which case ½T1=T2�ðnoÞ ¼ Oð1Þ
ing the fracture specific stiffnesses as (a) ks ¼ kn ¼ 0:1, and (b) ks ¼ kn ¼ 10.

aped fracture, and (b) with non-planar scatterer i.e. cylindrical fracture.



Fig. 6. Low-frequency reconstruction of an ‘‘isolated fluid-filled’’ planar fracture with ðks ; knÞ ¼ ð2;100Þ: (a) composite TS distribution �Tðno; n0;0;0Þ in three dimensions, and in
the fracture mid-section P1; (b) region containing the most pronounced negative TS values: �1 6 �T 6 �0:6, and (c) point-optimal normal vector n0ðnoÞ plotted over the true
fracture surface C.

F. Pourahmadian, B.B. Guzina / International Journal of Solids and Structures 71 (2015) 126–140 133
regardless of m. This is verified in Fig. 4, where the ratio T1=T2 is
plotted against R2 – scaled by the shear wavelength ks ¼ 2pcs=x
– for various Poisson’s ratios and two ‘‘extreme’’ sets of interfa-
cial stiffnesses, namely kI ¼ 0:1 and kI ¼ 10 ðI ¼ s;nÞ. In the
context of the proposed characterization scheme, Fig. 8(a) plots
the spatial distribution of T1 and T2 in a neighborhood of a
traction-free fracture. As can be seen from the display, the frac-
ture is visible from both panels, which suggests that ks and kn

are comparable in magnitude.
2. The limiting case ks � kn that, in the context of energy applica-

tions, corresponds to a hydraulically-isolated fracture (Choi
et al., 2014; Place et al., 2014; Bakulin et al., 2000). Under such
circumstances one has T1ðnoÞ � T2ðnoÞ, which can be verified
by letting 1n ! 0 in (30). This behavior is shown in Fig. 8(b),
where a hidden fracture with ðks; knÞ ¼ ð2;100Þ is visible in
the distribution of T2, but not in that of T1. Note that the image
of a fracture is notably smeared due to the use of low-frequency
excitation, as postulated by the interface characterization
scheme.

3. The case when the fracture surface is under small normal pres-
sure and the effect of surface roughness is significant, namely
ks � kn. Here T1ðnoÞ � T2ðnoÞ due to the fact that
limks!11s ¼ 0 thanks to(30). This is illustrated in Fig. 8(c),
where the fracture with ðks; knÞ ¼ ð100;2Þ appears in the distri-
bution of T1 only, suggesting that its interfacial stiffness accord-
ing to (3) is dominated by the shear component ks.

Here it is worth noting that the above TS scheme for qualitative
identification of the ratio ks=kn is non-iterative, and shines light on
an important contact parameter at virtually no computational
surcharge – beyond the effort needed to image the fracture. In
particular, since the (low-frequency) free and adjoint fields are
precomputed toward initial estimation of the fracture location z
and effective normal vector n, they can be re-used to compute T1

and T2 via (23), (24), (25) and (38), wherein the only variable is

the effective polarization tensor Aeff – describing trial fractures
with different interfacial condition.

Illumination by multiple incident waves. In many situations the
imaging ability of a TS indicator functional can be improved by
deploying multiple illuminating wavefields, which in the context
of this study translates into multiple directions d of plane-wave
incidence. In this case the ‘‘fortified’’ TS functional can be written
as

�T ¼
Z

Xd

Tjd �wðdÞdSd; ð39Þ

which superimposes (in a weighted fashion) the TS distributions for
incident plane waves spanning a given subset, Xd, of the unit
sphere. In the context of (33) and (34), the only d-dependent items
are the components of the free-field stress tensor rf . As a result, the
criteria deduced from (38) remain valid under the premise of
multiple incident-wave illumination provided that the free-field
terms

rf

33r

f
33

h i
; rf


33r
f
3b

h i
; rf


3ar
f
3b

h i
in (34) are replaced respectively byZ

Xd

rf

33r33f

h i
d

dSd;

Z
Xd

rf

33r

f
3b

h i
d

dSd;

Z
Xd

rf

3ar

f
3b

h i
d

dSd:



Fig. 7. Low-frequency reconstruction of a cylindrical fracture with ðks; knÞ ¼ ð4;4Þ: (a) composite TS distribution �Tðno; n0;0;0Þ in three dimensions, and in the fracture mid-
section P2; (b) region containing the most pronounced negative TS values: �1 6 �T 6 �0:6, and (c) point-optimal normal vector n0ðnoÞ plotted over the true fracture surface C.

Fig. 8. Spatial distribution of �T1 (top panels) versus �T2 (bottom panels), in the mid-section of a penny-shaped fracture, whose interface is (a) traction-free (ks ¼ kn ¼ 0), (b)
isolated fluid-filled ðks ¼ 2; kn ¼ 100Þ, and (c) of significant surface roughness and under low normal stress ðks ¼ 100; kn ¼ 2Þ.
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Comment. It is well known (Choi et al., 2014) that the fracture
specific stiffness, quantified in terms of ks and kn, is strongly
correlated with both (i) the state of stress at the interface (prior
to illumination), and (ii) the frequency of excitation (due to
presence of surface asperities). Under the premise of long
illuminating wavelength – exceeding the fracture extent, however,
the dependence of seismically-identified ks and kn on frequency is
expected to be mild due to separation in scales between the
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probing wavelength and the characteristic length representing the
asperities. With such caveats, the ensuing set of numerical results
are based on synthetic data computed, via a boundary integral
equation approach, for a fracture with a priori specified i.e. fixed
ks and kn. The main idea is to examine whether (at a given
frequency and given state of stress) the TS approach is capable of
non-iteratively sensing the fracture’s apparent contact law – an
information that, given the reconstruction at multiple frequencies,
could possibly be deployed to shine light of the physics of a frac-
ture interface – including e.g. its roughness, presence of proppant,
and hydraulic condition.

5. Numerical results

A set of numerical experiments is devised to illustrate the
performance of the TS for elastic-wave imaging of fractures and
qualitative characterization of their interfacial condition. To this
end the BIE computational platform, described in Appendix B, is
used to generate the synthetic data (uobs) for the inverse problem.
While the main focus of the study is on the low-frequency sensing
as mandated by the characterization scheme, the results also
include the TS reconstruction examples at intermediate-to-high
frequencies, motivating future research in this area. The sensing
setup, reflecting the assumptions made in Section 2, is shown in
Fig. 5 where the ‘‘true’’ fracture C is either (i) a penny-shaped crack
with diameter L ¼ 0:7 and normal n ¼ ð0;�1=

ffiffiffi
2
p

;1=
ffiffiffi
2
p
Þ – see

Fig. 5(a), or (ii) a cylindrical crack of length L ¼ 0:7 and radius
R ¼ 0:35 shown in Fig. 5(b). The shear modulus, mass density,
and Poisson’s ratio of the background medium are taken as
l ¼ 1;q ¼ 1 and m ¼ 0:35, whereby the shear and compressional
wave speeds read cs ¼ 1 and cp ¼ 2:08, respectively. The elastody-
namic field produced by the action of illuminating (P- or S-)
plane wave, propagating in direction d, on C is measured over

Sobs – taken as the surface of a cube with side 3:5 centered at the
origin. This was done to investigate the robustness of the interface
characterization scheme developed in Section 4 with respect to
the simplifying assumptions used to derive (33)–(35), namely the

premise that Sobs is a sphere. On the adopted observation surface,
the density of sensing points is chosen to ensure at least four sen-
sors per shear wavelength. In what follows, the TS is computed
inside a sampling cube of side 2 centered at the origin; its spatial
distribution is plotted either in three dimensions, or in the
mid-section P1 (resp. P2) of the penny-shaped (resp. cylindrical)
fracture shown in Fig. 5. In the spirit of an effort to test the robust-
ness of the adopted simplifying assumptions, it is noted that the
ratio between the radii of spheres circumscribing the sensing area
and the sampling region is R2=R1 ¼ 1:75 1.

Low-frequency TS reconstruction. Consider first the case of an
‘‘isolated fluid-filled’’ planar fracture shown in Fig. 5(a), whose
specific stiffnesses are given by ðks; knÞ ¼ ð2;100Þ. To geometrically
identify the fracture, the region of interest is illuminated by twelve
P- and S- incident waves propagating in directions d 2 ð�1; 0;0Þ;f
ð0;�1;0Þ; ð0; 0;�1Þg, while assuming ðjs;jnÞ ¼ ð0;0Þ for the
(vanishing) trial fracture. The illuminating frequency is taken as
x ¼ 4, whereby the ratio between the probing shear wavelength
ks ¼ 2pcs=x ’ 1:6 and fracture diameter, L, is approximately 2.2.
For each incident wave and each sampling point, the optimal
normal vector n0ðnoÞ is estimated by evaluating Tðno; n0 ¼
½cosðhiÞ cosð/jÞ; sinðhiÞ cosð/jÞ; sinð/jÞ�;0;0Þ for trial pairs ðhi;/jÞ 2
½0;2p� � ½0;p� and choosing the pair that minimizes Tðno; �Þ. Thus
obtained TS distributions are superimposed as

�Tðno; n0;0;0Þ ¼ jminno �Tj�1
X12

n¼1

Tðno; n0;0;0Þjðbn ;dnÞ;
resulting in a composite indicator function whose spatial distribu-
tion shown in Fig. 6(a). In this setting, the fracture is geometrically
identified via a region where �T attains its most pronounced nega-
tive values, see Fig. 6(b). To provide a more complete insight into
the performance of the approach, Fig. 6(c) plots the distribution of
point-optimal unit normal n0ðnoÞ over the reconstructed region.
For the purposes of interface characterization, the fracture location
z is identified according to (37), while its effective normal n0 is
computed by averaging n0ðnoÞ over the reconstructed volume in
Fig. 6(b).

For completeness, the above-described geometrical identifica-
tion procedure is next applied to the cylindrical fracture in
Fig. 5(b), assuming the ‘‘true’’ specific stiffnesses as
ðks; knÞ ¼ ð4;4Þ and setting the excitation frequency to x ¼ 5. In
this case, the wavelength-to-fracture-size ratio can be computed
as ks=L ’ 1:8. The resulting distributions of �T and point-optimal
normal n0 are shown in Fig. 7, from which one can observe that
(i) the method performs similarly for both planar an non-planar
fractures, and (ii) the reconstruction procedure is apparently not
sensitive to the nature of the interfacial condition in terms of ks

and kn.
Interface characterization. With reference to Fig. 5(a), the

characterization of a penny-shaped fracture with three distinct
interface scenarios is considered, namely: (i) the traction-
free crack i.e. kn ¼ ks ¼ 0, (ii) isolated fluid-filled fracture with
ðks; knÞ ¼ ð2;100Þ, and (iii) fracture with rough surfaces under
insignificant normal stress (Seidel and Haberficld, 1995), simulated
by setting ðks; knÞ ¼ ð100;2Þ. In all cases, the interface characteriza-
tion is carried out at x ¼ 5 i.e. ks=L ’ 1:8 using twelve incident
(P- and S-) waves as described earlier. Next, to identify the contact
condition, the ‘‘test’’ indicator functions

�T1ðnoÞ ¼ j�Tmj�1

P12
n¼1Tðn

o; n;0;50Þjðbn ;dnÞP12
n¼1jr

f
33ðzÞj

2
ðbn ;dnÞ

;

�T2ðnoÞ ¼ j�Tmj�1

P12
n¼1Tðn

o; n;50;0Þjðbn ;dnÞP12
n¼1 rf


3br
f
3b

h i
ðzÞjðbn ;dnÞ

are computed on the basis of (38), where
�Tm ¼min minno �T1;minno �T2

n o
. The resulting distributions of �T1

and �T2 for all three scenarios are plotted in Fig. 8, using a common
color scale, over the fracture’s mid-section P1. From the display,
it is clear that �T1ðnoÞ=�T2ðnoÞ ¼ Oð1Þ; �T1ðnoÞ � �T2ðnoÞ, and
�T1ðnoÞ � �T2ðnoÞ respectively for the ‘‘true’’ interfacial conditions
according to (i), (ii) and (iii). These results indeed support the claim
of the preliminary characterization scheme that, at long illumina-
tion wavelengths, the interfacial condition of nearly-planar frac-
tures can be qualitatively assessed at virtually no computational
cost – beyond what is needed to identify the fracture geometrically.

TS reconstruction at higher frequencies. Clearly, the geometrical
information in Figs. 6(b) and 7(b), obtained with ks=L  2, does
not carry sufficient detail to accurately reconstruct the fracture
surface in 3D from the scattered elastic waves. To help mitigate
the drawback, the forward scattering problem is recomputed at a
higher frequency, namely x ¼ 20, for which ks=L ’ 0:45. In doing
so, the number of incident elastodynamic fields is increased so that
twenty plane waves of each (P- and S-) type, propagating in
directions dn 2 X; n ¼ 1;2; . . . ;20f g – evenly distributed over the
unit sphere X – participate in the TS evaluation. The resulting
‘‘high-frequency’’ behavior of the composite indicator function

�Tðno; n0;0;0Þ ¼ jminno �Tj�1
X40

n¼1

Tðno; n0;0;0Þjðbn ;dnÞ



136 F. Pourahmadian, B.B. Guzina / International Journal of Solids and Structures 71 (2015) 126–140
is shown in Figs. 9 and 10 for the cases of penny-shaped fracture
and cylindrical fracture, respectively (see Fig. 5). The featured
results are consistent with the recent findings in acoustics and
elastodynamics (Feijoo, 2004; Tokmashev et al., 2013; Guzina
and Pourahmadian, 2015) which demonstrate that, at higher illu-
mination frequencies, pronounced negative values of TS tend to
localize in a narrow region tracing the boundary of a scatterer.
However, in the present case �T also exhibits a notable sensitivity
to the fracture’s interfacial condition; in particular, for the
traction-free crack in Fig. 9(a), extreme negative values of the
TS are localized in the vicinity of the crack tip, whereas in
the case of fractures with interfacial stiffness – Figs. 9(b) and
10 – the TS exposes the entire fracture surface. These initial
results suggest that at shorter wavelengths, the TS experiences
Fig. 9. ‘‘High’’-frequency (ks=L ’ 0:45) TS reconstruction of a penny-shaped fracture who
ðks ¼ 2; kn ¼ 100Þ.

Fig. 10. ‘‘High’’-frequency (ks=L ’ 0:45) TS reconstruction of a cylindrical fracture with kn

map thresholded at 70%.
a different type of sensitivity to the fracture interfacial condition,
which may lead to a more detailed identification of the fracture’s
specific stiffnesses. Given a sensory data set that includes the
scattered field measurements at both long and short wavelengths,
one may consider a staggered approach where (i) high-frequency
data are deployed to more precisely evaluate the fracture
geometry, including its location z and effective normal n;
(ii) low-frequency observations are used as in Section 4 to
qualitatively identify the interfacial condition, and (iii) additional
information is obtained on the fracture’s interface thanks to the
dependence of the high-frequency TS thereon. Such develop-
ments, however, require high-frequency asymptotics of the
scattered field due to a fracture with specific stiffness – a topic
that is beyond the scope of this study.
se interfacial condition is (a) traction-free (ks ¼ kn ¼ 0), and (b) isolated fluid-filled

¼ ks ¼ 4: (a) distribution of �T in the fracture’s mid-section, and (b) corresponding �T



Fig. 11. Geometric (dotes) and interpolation (crosses) nodes on Ctrial in physical and parametric spaces.
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6. Summary

This work investigates the utility of the topological sensitivity
(TS) approach as a non-iterative tool for the waveform tomography
of fissures with specific stiffness, e.g. hydraulic fractures. On postu-
lating the nucleation of an infinitesimal penny-shaped fracture
with constant (normal and shear) interfacial stiffnesses at a sam-
pling point, the TS formula and affiliated elastic polarization tensor
are calculated and expressed in closed form. In this setting, it is
shown via numerical simulations that the TS carries the capacity
of exposing the fracture location and its unit normal from the
long-wavelength scattered field measurements, regardless of the
assumption on the (trial) interfacial parameters of a vanishing frac-
ture. Given thus obtained geometric information and elastody-
namic (free- and adjoint-field) simulations required for its
computation, it is further shown that the interfacial condition of
nearly-planar fractures can be qualitatively identified at virtually
no added computational cost, using two auxiliary TS maps evalu-
ated for certain (extreme) combinations of the trial contact param-
eters. In particular, the analysis shows that such scheme allows for
the ratio between the shear and normal specific stiffness, namely
ks=kn – representative of a hidden fracture – to be exposed as either
(i) near-zero, (ii) on the order of unity, or (iii) exceeding unity by a
large amount. Such information is important to a number of field
applications, e.g. when discriminating between the old, newly cre-
ated and proppant-filled fractures (Verdon and Wustefeld, 2013),
providing the ‘‘initial guess’’ on the fracture’s interfacial condition
for seismic waveform tomography, and assessing the hydraulic
conductivity of a fracture network (Baird et al., 2013; Verdon and
Wustefeld, 2013). In the context of multiphase rock mechanics,
experimental studies have also shown (Choi et al., 2014; Place
et al., 2014; Lubbe et al., 2008; Hobday and Worthington, 2012)
that ks=kn may exhibit significant variations in the field – which
inherently affects the analyses of effective medium properties
(Bakulin et al., 2000) and studies on wave propagation through
fractured media (Sayers and den Boer, 2012). Through preliminary
simulations at ‘‘short’’ incident wavelengths – subpar to the char-
acteristic fracture size – which demonstrate both enhanced imag-
ing resolution of the TS indicator function and its heightened
sensitivity to fracture’s interfacial condition, this study further pro-
vides an impetus for studying the high-frequency elastodynamic
scattering by, and TS sensing of, fractures with specific stiffness.
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Appendix A. Asymptotic behavior of the integrals in (34)

The aim of this section is to expose the leading-order behavior
of the integrals in (34) for R2=R1 � 1, where the integrands are
expressed as antilinear forms in terms of the components of the
fundamental stress tensor.

Elastodynamic fundamental solution. Assuming time-harmonic
excitation by the unit point force applied at x 2 R3 in direction k,
the governing equation of motion for an infinite solid with shear
modulus l, mass density q and Poisson’s ratio m can be written as

rn � Rk þ qx2Uk ¼ dðn� xÞek; n 2 R3; n – x;

where Ukðn; x;xÞ and Rkðn; x;xÞ denote respectively the fundamen-
tal displacement vector and stress tensor, given in the component
form by

Uk
i ðn; x;xÞ ¼

1
4plr

B1ðrÞdik þ B2ðrÞr;ir;k
� �

;

Rk
ijðn; x;xÞ ¼

1
4pr2 2B3ðrÞr;ir;jr;k þ ðdikr;j þ djkr;iÞB4ðrÞ þ B5ðrÞdijr;k

� �
:

ðA:1Þ

Here

B1ðrÞ ¼ 1� i
vs
� 1

v2
s

� 	
e�ivs þ c2 i

vp
þ 1

v2
p

 !
e�ivp ;

B2ðrÞ ¼
3
v2

s
þ 3i

vs
� 1

� 	
e�ivs � c2 3

v2
p
þ 3i

vp
� 1

 !
e�ivp ;

B3ðrÞ ¼ 6� 15
v2

s
� 15i

vs
þ ivs

� 	
e�ivs � c2 6� 15

v2
p
� 15i

vp
þ ivp

 !
e�ivp ;

B4ðrÞ ¼ �ð1þ ivsÞe�ivs þ 2B2ðrÞ;
B5ðrÞ ¼ �ð1� 2c2Þð1þ ivpÞe�ivp þ 2B2ðrÞ;

ðA:2Þ

and

r ¼ jn� xj; vs ¼
rx
cs
; vp ¼

rx
cp
; c ¼ cs

cp
; r;i ¼

@r
@ni

;

where dij denotes the Kronecker delta, cs ¼
ffiffiffiffiffiffiffiffiffi
l=q

p
, and

cp ¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 2mÞ=ð1� 2mÞ

p
.

Integration. For x 2 B1 and n 2 Sobs (see Fig. 1), the argument
r ¼ jn� zj of the relevant coefficients in (A.1) and (A.2) describing

Rk
ijðn; z;xÞ can be approximated (assuming R2=R1 � 1) to the lead-

ing order as r ’ R2; as a result, the prevailing behavior of integrals
in (34) can be written as
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Q 1 :

Z
Sobs

Rj

33R

j
33

h i
ðn;z;xÞdSn

’X1

Z p

0

Z 2p

0
X2r4

;3þ4ReðX3Þr2
;3þjB5ðR2Þj2

� �
sinð/Þdhd/; ðA:3Þ
Q 2 :

Z
Sobs

Rj

33R

j
3b

h i
ðn; z;xÞdSn

’ X1

Z p

0

Z 2p

0
r;3r;b X2r2

;3 þ 2X3

� �
sinð/Þdhd/ ¼ 0; ðA:4Þ

where b ¼ 1;2, and
Q3 :

R
Sobs R j

3bðn; z;xÞ



 


2 dSn ’ X1

R p
0

R 2p
0 X2r2

;br2
;3 þ ðr2

;3 þ r2
;bÞjB4ðR2Þj2

� �
sinð/Þdhd/;R

Sobs Rj

31R

j
32

h i
ðn; z;xÞdSn ’ X1

R p
0

R 2p
0 X2r;1r;2r2

;3 þ jB4ðR2Þj2r;1r;2
� �

sinð/Þdhd/ ¼ 0;
ðA:5Þ
X1 ¼
1

ð4pR2Þ2
; X2 ¼ 4Re jB3j2 þ 2B
3B4

h i
ðR2Þ

n o
;

X3 ¼ jB4j2 þ ðB3 þ B4ÞB
5
h i

ðR2Þ: ðA:6Þ

Considering the unit vector rr ¼ r;1; r;2; r;3ð Þ ¼ sinð/Þ cosðhÞ;ð
sinð/Þ sinðhÞ; cosð/ÞÞ used to define Sobs in spherical coordinates,
the integrals of (A.3)–(A.5) are analytically evaluated resulting in
(35).

Appendix B. BIE computational platform

This section summarizes the numerical scheme adopted to
solve the elastodynamic traction BIE for a fractured three-
dimensional solid. The approach borrows substantially from the
ideas established in Bonnet (1999) and Guzina (1996) considering
the regularization of the featured surface integrals. For brevity, the
technique is described with reference to the elastostatic canonical
problem (22). With slight modifications, however, this method is
utilized in a more general setting of Section 5 to compute the
scattering of elastic waves by an arbitrarily-shaped fracture.
Accordingly, the auxiliary formulae are expressed in their most
general form (as applicable). Unless stated otherwise, the Einstein
summation convention is assumed over repeated coordinate
indexes.

Regularization. To avoid evaluating the Cauchy principal value in
(22), the featured integral equation can be conveniently rewritten
as

1
2
½ei � ej þ ej � ei�k‘n

0
‘ þ ½K trial�k‘sV ‘t

ijð�nÞ

¼ n0‘Ck‘pqDqssVmt
ijð�nÞ�Sp

msð�n;CtrialÞ

þ n0‘Ck‘pq

Z
Ctrial

DqssVmt
ijð�xÞ � DqssVmt

ijð�nÞ
� �

�Rp
msð�n; �xÞdS�x;

�n 2 Ctrial; ðB:1Þ

where the dummy indexes are summed over 1;3, and the singular-
ity is transferred to the auxiliary integrals

I‘ð�n;CtrialÞ ¼
Z
--

Ctrial

1
r2 r;‘ dS�x; Jpq‘ð�n;CtrialÞ

¼
Z
--

Ctrial

1
r2 r;pr;qr;‘ dS�x; �n 2 Ctrial; ðB:2Þ

comprising the third-order tensor
�Sp
msð�n;CtrialÞ ¼

Z
--

Ctrial

�Rp
msð�n; �xÞdS�x

¼ � 1
8pð1� mÞ ð1� 2mÞðdmpIs þ dspIm � dmsIpÞ þ 3Jmsp

� �
:

ðB:3Þ
Here it is useful to recall that r¼ j�n��xj; r;‘ ¼ @r=@�x‘, and K trial ¼
jnð�e3 � �e3Þ þ jsð�e1 � �e1Þ þ jsð�e2 � �e2Þ where ð�e1; �e2; �e3Þ are the unit
vectors along ð�n1; �n2; �n3Þ. Considering I‘ first, one finds (Bonnet,
1999) via integration by parts, taking advantage of the Stokes
identity, and noting that sVt
ij ¼ 0 on @Ctrial, that the first in (B.2)

can be reduced as

I‘ ¼
Z

Ctrial

1
r

1
r

n0pr;p �wqn0q

� 	
n0‘ dS�x �

Z
@Ctrial

1
r

v‘ ds; �n 2 Ctrial;

ðB:4Þ

where Ctrial is interpreted as an open set (excluding fracture’s edge
@Ctrial); p; q ¼ 1;2;3; v denotes the outward normal on @Ctrial lying
within the tangent plane to Ctrial, and wkðf Þ ¼ f ;k � n0kðf ;pn0pÞ is the
tangential derivative operator. In terms of Jpq‘, on the other hand,
one similarly obtains

3Jpq‘¼dp‘Iqþdq‘Ipþ
Z

Ctrial

1
r

r;qr;sDspn0‘�wpðn0qn0‘Þ�wqðn0pn0‘Þ
� �

dS�x

þdpq

Z
Ctrial

1
r2 n0‘n

0
sr;s dS�xþ

Z
Ctrial

1
r

n0‘ð2n0pn0q�r;pr;qÞwsn0s dS�x

�2
Z

Ctrial

n0p
r2 n0qn0‘n

0
sr;s dS�xþ

Z
@Ctrial

1
r

vpn0‘n
0
qþvqn0‘n

0
p�r;pr;qv‘

� �
ds

þ
Z
@Ctrial

1
r

n0‘r;qr;s vsn0p�vpn0s
� �

ds; �n2Ctrial: ðB:5Þ

For further details on (B.1)–(B.5), the reader is referred to Chapter
13 in Bonnet (1999). Here one should mention that, for the
canonical problem in Section 3.2 where n0 ¼ �e3, formulas (B.4)
and (B.5) can be remarkably simplified (see Appendix 5.A in
Bonnet, 1999). In this presentation, however, both formulae are
kept in their general format for they also pertain to the scattering
by arbitrarily-shaped fractures.

Parametrization. With reference to Fig. 11, the fracture boundary
Ctrial is discretized using a conformal mesh permitting surface
parametrization (y ! �x) as

�xðy1; y2Þ ¼ wmðy1; y2Þ �xm; m ¼ 1; � � � ;Nn; �1 6 y1; y2 6 1:

ðB:6Þ

Here Nn ¼ 8 designates the number of nodes per element, and �xm

denotes the global coordinates of the element’s mth node – whose
shape function wmðyÞ is that of the standard eight-node quadrilat-
eral element. In this setting, one finds the natural basis a1;2 of the
tangent plane and the surface differential as

abðyÞ ¼
@wm

@yb

�xm; dS�x ¼ GðyÞdSy; GðyÞ ¼ ja1 � a2j; ðB:7Þ

where b ¼ 1;2 and the dummy index m is summed over 1;8. At this
stage, one should note that all integrands in (B.4) and (B.5) – com-
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prising �Sp
ms in (B.1) – are known so that the boundary parametriza-

tion, given by (B.6) and (B.7), is the only necessary step prior to
numerical integration.

In light of the smoothness requirement by the traction BIE (B.1)
and the adverse presence of the tangential derivative operator

Dqsð�Þ, the COD sVt
ijð�xÞ is discretized via non-conforming interpola-

tion (see Section 3.2 of Bonnet (1999) for details). In particular, the
interpolation i.e. collocation points are situated inside the bound-
ary elements (see Fig. 11), and their position with respect to the
geometrical nodes – in each element – is quantified via parameter
g in the ðy1; y2Þ space. In this setting, the COD over the parent ele-
ment can be approximated as

sV ‘t
ijð�xÞ ¼ /mðyÞsV ‘t

ij
m; m ¼ 1; . . . ;8; ðB:8Þ

where

sV ‘t
ij
m ¼ sV ‘t

ij �xmð Þ; /mðyÞ

¼ 1
4g3 gþ ym

1 y1

� �
ðgþ ym

2 y2Þðym
1 y1 þ ym

2 y2 � gÞ; ðB:9Þ

and ym
1 ; y

m
2

� �
is the position of the mth collocation point in the par-

ent element as shown in Fig. 11. Here it is important to mention
that the surface elements adjacent to @Ctrial are of quarter-node type
(see e.g. Chapter 13 of Bonnet (1999)), designed to reproduce the
square-root behavior of the COD in the vicinity of @Ctrial. Note that
for constant distribution of interfacial stiffness, i.e. for constant
stiffness matrix K trial, the asymptotic behavior of the COD near
@Ctrial remains the same as that in the case of traction-free crack
(see Ueda et al., 2006 for proof).

Given (B.6)–(B.9), it can be shown (Bonnet, 1999) that the

tangential derivative operator DqssV ‘t
ijð�xÞ in (B.1)

DqssV ‘t
ijð�xÞ ¼ Km

qsðyÞsV ‘t
ij
m;

Km
qsðyÞ ¼

�pqs

GðyÞ ½ða2 � �epÞ/m;1 � ða1 � �epÞ/m;2�ðyÞ; /m;b ¼
@/m

@yb

; ðB:10Þ

where the dummy indexes p and m are summed over 1;3, and 1;8,
respectively; the basis unit vectors �ep are shown in Fig. 11, and �pqs

denotes the Levi–Civita symbol.
On substituting (B.7) and (B.10) into (B.1), one arrives at the

algebraic system for the values of sVt
ij at the collocation nodes
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where e
 is the element number; m
 denotes the local node num-
ber; no sum over e
 and m
 is implied; Nn ¼ 8; Ne is the number
of elements, and

sV ‘t
ij
me ¼ sV ‘t

ijð�xm
e Þ; Kme

qs ðyÞ

¼ �pqs

GeðyÞ
½ðae

2 � �epÞ/m;1 � ðae
1 � �epÞ/m;2�ðyÞ: ðB:12Þ

Here it is worth noting that all integrals in (B.4), (B.5) and (B.11) are
numerically integrable. A specific mapping technique (in the case of
weak singularity) along with the standard Gaussian quadrature
method is employed to evaluate the aforementioned integrals (see
Section 3.9 of Guzina, 1996 for details).
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